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Abstract

Using Van Kampen’s normal mode expansion, we solve the initial value problem for
a high-gain free-electron laser (FEL) described by the three-dimensional Maxwell-
Klimontovich equations. An expression of the radiation spectrum is given for the
process of coherent amplification and self-amplified spontaneous emission. It is noted
that the input coupling coefficient for either process increases with the initial beam
energy spread. The effective start-up noise is identified as the coherent fraction of
the spontaneous undulator radiation in one field gain length, and is larger with in-
creasing energy spread and emittance mainly because of the increase in gain length.
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1 Introduction

In a high-gain free-electron laser (FEL), a coherent external signal or the

incoherent undulator radiation can initiate the FEL interaction for an expo-

nentially growing coherent radiation. Such a radiation is a promising source

for future-generation x-ray facilities. Thus, it is important to understand how
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the exponential process starts and how the incoherent radiation develops into

a coherent source.

The FEL initial value problem was solved in one-dimensional (1-D) theory [1,2]

using the Laplace transform technique. The three-dimensional (3-D) initial

value problem for a parallel beam was studied by Van Kampen’s method in

Ref. [3] and by a Green’s function technique in Refs. [4,5]. Extension of Van

Kampen’s method to include the emittance effect was made in Refs. [6,7].

Using an equivalent method, Xie [8] independently obtained the solution to

the initial value problem including emittance and numerically found that the

effective start-up noise in self-amplified spontaneous emission (SASE) becomes

significantly larger with finite emittance and energy spread.

Inspired by the work of Xie, we explain the solution to the FEL initial value

problem using Van Kampen’s method applicable to the 3-D case including

betatron focusing and emittance. We then attempt to provide an understand-

ing of the dependence of the effective start-up noise on beam parameters.

Two factors determining the start-up process are identified. The input cou-

pling coefficient for both coherent amplification (CA) and SASE is found to

increase with the initial energy spread. The effective start-up noise is shown

to be the coherent fraction of the spontaneous undulator radiation in the first

field gain length, generalizing the result of Ref. [5] for a beam with vanishing

energy spread and emittance. The effective start-up noise appears to be larger

with increasing energy spread and emittance mainly because of the increase

of the gain length. Fluctuation in initial electron velocities (due to beam en-

ergy spread and angular spread) do not seem to contribute to any additional

start-up noise.
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2 The Dynamic Equations and the Initial Conditions

We follow closely to the notations of Ref. [7], which makes extensively use

of the FEL parameter ρ [9] to scale all the dynamical variables. Assuming

that the initial electron distribution f0 is matched to the undulator channel

transversely and has a uniform longitudinal profile, the Maxwell-Klimontovich

equations in the small signal regime can be written as [7]

(

∂

∂z̄
− iM

)

Φ(z̄) = 0, (1)

where the state vector is

Φ(z̄) =







aν(x̄; z̄)

fν(η̄, x̄, p̄; z̄)





 , (2)

and the operator M is defined through

MΦ(z̄) =







(

−ν̄ + ∇̄
2
⊥

2

)

aν − i
∫

d2p̄
∫

dη̄fν

−iaν ∂f0∂η̄
+
[

−ν
(

η̄ − 1
2
(p̄2 + k̄2x̄2)

)

+ i
(

p̄ ∂
∂x̄
− k̄2βx̄

∂
∂p̄

)]

fν





 . (3)

Here the scaled undulator distance z̄ is the independent “time” variable, aν

and fν are the νth fourier component of the scaled electric field and the elec-

tron distribution function, respectively, (θ, η̄, x̄, p̄) are the longitudinal and

the transverse phase space variables, ∇̄⊥ = ∂/(∂x̄) is the scaled transverse

Laplacian, ν̄ = (ν − 1)/(2ρ), k̄ is the scaled natural focusing strength, and k̄β

is the total scaled focusing strength (including the natural focusing and the

average effects of the external focusing).

The evolution of the radiation field and the distribution function in the start-

up and the exponential growth regimes is completely determined by Eq. (1)

and the initial value Φ(0) of the state vector. The latter is specified by the

external signal aν(0) and the shot noise fν(0) =
∫ 2ρdθ

2π
e−iνθf1(0). Although
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the ensemble average of fν(0) is zero, physically meaningful quantities such as

intensity can be computed by using the relation [10]:

〈fν(η̄, x̄, p̄; 0)fν(η̄′, x̄′, p̄′; 0)〉 = 2k21kuρ
3θb

π2n0
δ(η̄ − η̄′)δ(x̄− x̄′)δ(p̄− p̄′)f0. (4)

Here λ1 = 2π/k1 is the resonant radiation wavelength, λu = 2π/ku is the

undulator period, n0 is the peak electron volume density, and θb is the bunch

length in units of 2π/λ1.

3 Van Kampen’s Normal Mode Expansion

The initial value problem formulated in the previous section can be solved

by expanding the solution in terms of the eigenvectors of Eq. (1). The co-

efficients of the expansion are determined from the initial conditions if the

eigenvectors are mutually orthogonal under a suitably defined scalar product.

The procedure is well-known in quantum mechanics in which all operators are

Hermitian. Here M is not a Hermitian operator, and we employ the extension

of the method developed by Van Kampen [11] in studying the 1-D plasma

waves.

Let us first find the eigenvalues and the eigenvectors of Eq. (1), defined to be

solutions

e−iµnz̄Ψn = e−iµnz̄







An(x̄)

Fn(η̄, x̄, p̄)





 . (5)

Solving the eigenvalue equation (µn+M)Ψn = 0, we obtain the mode equation



−iµn + iν̄ +
∇̄

2
⊥

2i



An(x̄)−
∫

d2p̄
∫

dη̄
∫ 0

−∞
dτAn(x̄β(τ))e

iφβ(τ)
∂f0
∂η̄

= 0,

(6)
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where

x̄β(τ) =x̄ cos k̄βτ +
p̄

k̄β
sin k̄βτ,

φβ(τ) =
[

η̄ − 1

2

(

p̄2 + k̄2βx̄
2
)

− µn

]

τ. (7)

Equation (6) is the dispersion relation derived in Refs. [3,12] for natural fo-

cusing only (i.e., k̄β = k̄). For alternating-gradient focusing with k̄β À k̄, it is

shown to be also valid after averaging properly over many periods of the focus-

ing structure [13,14]. It can be solved using a variational principle [12,15] and a

matrix formalism [15]. In general, a discrete set of eigenvalues and eigenmodes

exists.

Van Kampen orthogonality of these eigenvectors is constructed by introduc-

ing the adjoint eigenvalue equation (µ̃n + M̃)Ψ̃n = 0, where µ̃n and Ψ̃n are

the adjoint eigenvalues and eigenvectors of the adjoint operator M̃. The for-

mal procedure can be found in Ref. [7]. In the high-gain regime where the

fundamental mode A0(x̄) dominates because its eigenvalue µ0 has the largest

imaginary part µI , we project the initial conditions to this mode à la Van

Kampen and obtain the evolution of the electric field

aν(x̄; z̄) =
A0(x̄)e

−iµ0z̄

C0

[

∫

d2x̄′A0(x̄
′)aν(x̄

′; 0)

+
∫

d2x̄′
∫

d2p̄
∫

dη̄fν(η̄, x̄
′, p̄; 0)

∫ 0

−∞
dτA0 (x̄β(τ)) e

iφβ(τ)

]

, (8)

where

C0 =
∫

d2x̄A2
0(x̄) +

∫

d2x̄
∫

d2p̄
∫

dη̄
∂f0
∂η̄

[∫ 0

−∞
dτA0 (x̄β(τ)) e

iφβ(τ)
]2

. (9)

These expressions have been obtained independently by Xie [8] using an equiv-

alent method. The first term in the square bracket of Eq. (8) describes the

process of coherent amplification, which starts from an external signal aν(0).
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The second term describes the process of self-amplified spontaneous emission,

which starts from white noise. Equation (8) for the parallel e-beam (with

vanishing emittance) reduces to those of Refs. [3,4]. The ensemble averaged

spectrum of the radiation intensity (power per unit area) can be computed

with the help of Eq. (4):

1

ρIbeam

dI

dν
=

2π

(2ρ)2θb
〈|aν(x̄; z)|2〉

=
1

|C0|2
|A0(x̄)|2e2µI z̄

[

2π

(2ρ)2θb

∣

∣

∣

∣

∣

∫

d2x̄′A0(x̄
′)aν(x̄

′; 0)

∣

∣

∣

∣

∣

2

+
2k21kuρ

2πn0

∫

d2x̄′
∫

d2p̄
∫

dη̄f0(η̄, x̄
′, p̄)

∣

∣

∣

∣

∣

∫ 0

−∞
dτA0 (x̄β(τ)) e

iφβ(τ)

∣

∣

∣

∣

∣

2]

, (10)

where Ibeam = γ0mc
3n0, and γ0mc

2 is the beam energy.

4 Effects of Energy Spread

To isolate the energy spread effects in the FEL start-up process, we look at

the 1-D limit of the above results by setting An(x̄) = 1,
∫

d2x̄ = 2k1kuρΣ (Σ

is the beam cross section) and dropping
∫

d2p̄ and the transverse Laplacian.

The mode Eq. (6) reduces to the 1-D dispersion relation [1]:

D(µ) = µ− ν̄ −
∫

dη̄
dV/dη̄

η̄ − µ
= 0, (11)

where f0 = V (η̄) with
∫

dη̄V (η̄) = 1. For a monoenergetic beam (i.e., V (η̄) =

δ(η̄)), this reduces to the cubic equation [9] with a growing, a decaying and

an oscillatory solution. The intensity spectrum of Eq. (10) becomes the power

spectrum of Ref. [1]:

dP

dω
=
dI

dν

Σ

ck1
= gAe

2µI z̄

[(

dP

dω

)

C

+

(

dP

dω

)

S

]

, (12)
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where

gA =

[

1− 2
∫

dη̄
V (η̄)

(η̄ − µ)3

]−2

=

(

dD

dµ

)−2

,

(

dP

dω

)

C

=
πPbeam

2ρck1θb
|aν(0)|2 (coherent source),

(

dP

dω

)

S

=gS
ργ0mc

2

2π
(start-up noise), (13)

gS =
∫

dη̄
V (η̄)

|η̄ − µ|2 =
∫

dη̄
V (η̄)

µ2
I + (η̄ − µR)2

.

Here Pbeam = IbeamΣ is the beam power, and µ = µR + iµI is a function of

the frequency detuning ν̄ through the dispersion relation. For CA, the am-

plification occurs at the frequency defined by the frequency of the coherent

source. For SASE, the frequency dependence is determined by µI(ν̄) in the

exponent of Eq. (12). Thus, gA and gS, evaluated at the optimal detuning ν̄0

where the growth rate µI reaches the maximum, determine the input coupling

to the exponentially growing mode and the effective start-up noise in units of

ργ0mc
2/(2π), respectively.

In Ref. [1], G = gAgS has been computed numerically for a flat-top energy

distribution and has been found to increase initially with energy spread. For

a Gaussian energy distribution

V (η̄) =
1√
2πσ̄η

exp

(

− η̄2

2σ̄2
η

)

, (14)

we compute µI , gA and gS as functions of the rms energy spread σ̄η = σγ/(γ0ρ)

(see Fig. 1) and find that both gA and gS increase with σ̄η. For a monoener-

getic beam, any initial signal (external or spontaneous) couples equally well

to the three (growing, decaying and oscillatory) modes that have the same

normalization factor, hence we have the well-known gA = 1/9. However, gA is

larger for a larger energy spread, approaching 1/4 for the flat-top model and

1 for the Gaussian model. We note that the increase of the input coupling
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coefficient gA is the same for both CA and SASE, and a plausible explanation

may be made [16] as follows: an electron beam with larger energy spread is

less sensitive to the detuning effect due to the deceleration of the electrons

caused by the FEL interaction. Thus, it can couple more effectively with the

exponentially growing radiation.

The increase in the effective start-up noise through gS may be interpreted in

the following way. First of all, gS = 1 for a monoenergetic beam, and the

quantity ργ0mc
2/(2π) is approximately the spontaneous undulator radiation

in the first field gain length Lg0 = 1/(kuρ
√
3) [5]. For a beam with a finite

energy spread, the spontaneous radiation spectrum in the forward direction

is the convolution of the beam energy spectrum and the undulator radiation

spectrum with an intrinsic bandwidth 2∆η = ∆ν = ∆ω/ω ∼ 2π/(kuz). After

the first field gain length z = Lg = (2kuρµI)
−1, the spontaneous radiation

spectrum becomes

(

dP

dω

)spont

Lg

=
ργ0mc

2

2πµ2
I

∫

dη̄V (η̄)Su

(

η̄ − ν̄

2µI

)

, (15)

where S(x) = sin2(x)/x2 is the undulator spectral function [18]. Rewriting

Eq. (13) as

(

dP

dω

)

S

=
ργ0mc

2

2πµ2
I

∫

dη̄V (η̄)

[

1

1 + (η̄ − µR)2/µ2
I

]

(16)

and comparing with Eq. (15), we may interpret the effective start-up noise as

the fraction of the spontaneous undulator radiation in the first field gain length

within the coherent gain bandwidth ∆η̄ ∼ ∆ν̄ ∼ µI (much narrower than the

intrinsic undulator bandwidth 2πµI). Using the Gaussian energy distribution

in Eq. (14) and approximating the Lorentzian in the square bracket of Eq. (16)
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by another Gaussian, we can carry out the η̄-integral to obtain

(

dP

dω

)

S

≈ ργ0mc
2

2πµ2
I

exp

(

− µ2
R

2σ̄2
η + µ2

I

)

1
√

1 + 2σ̄2
η/µ

2
I

. (17)

With increasing energy spread, the coherent fraction of the spontaneous ra-

diation decreases, but the drop in the growth rate significantly increases the

spontaneous radiation power in one field gain length, leading to the over-

all increase of the effective start-up noise through gS (as seen in Fig. 1). In

fact, for large values of the energy spread σ̄2
η À 1, µR ≈ ν̄0 ≈ −σ̄η and

µI ≈ 0.76/σ̄2
η [17], so that (dP/dω)S ∝ σ̄η increases without bound because

the noise required to start the SASE process is infinite!

5 Effects of Emittance

We now return to the full 3-D Eq. (10) and consider SASE (the second term)

only. Assuming that the betatron oscillations are slow on the scale of the gain

length, we take k̄βτ ¿ 1, x̄β(τ) ≈ x̄′ and integrate
∫

dx2(dI/dω) to obtain

the SASE power spectrum

(

dP

dω

)

SASE

≈ g3DA

(

dP

dω

)

S

e2µI z̄. (18)

Here g3DA =
∫

d2x̄|A0(x̄)|2/|C0|2 is the input coupling coefficient. The effective

start-up noise is

(

dP

dω

)

S

=
ργ0mc

2

2πµ2
I

∫

d2x̄|A0(x̄)|2
∫

d2p̄U(p̄2 + k̄2βx̄
2)

×
∫

dη̄V (η̄)



1 +

(

η̄ − (p̄2 + k̄2βx̄
2)/2− µR

µI

)2




−1

, (19)

where U(p̄2 + k̄2βx̄
2) is the electron transverse distribution function. Equa-

tion (19) provides a similar phase-space convolution as the spontaneous un-

dulator radiation when the effects of electron angular spread is taken into
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account [18], except that the spectral function is a Lorentzian instead of the

undulator spectrum Su at one field gain length. Identifying µI as the band-

width of η̄ (or ν̄) as in Sec. 4 and
√
µI as the angular spread of the fundamen-

tal mode (or Lg = (2kuµIρ)
−1 as the Rayleigh length), we may interpret the

effective start-up noise as the phase-space convolution of the spontaneous un-

dulator radiation in the first field gain length with the coherent fundamental

laser mode.

For numerical computation, we approximate A0(x̄) = exp(−w|x̄|2/σ̄2
x), where

w = wR + wI is a complex number characterizing the fundamental radiation

mode, and σ̄x is the scaled transverse e-beam size and is related to the rms

emittance ε = σ̄2
xk̄β/k1. Equation (18) can be written as

(

dP

dω

)

SASE

≈ g3DA g3DS
ργ0mc

2

2π
e2µI z̄, (20)

where

g3DA ≈
∣

∣

∣

∣

∣

∣

1− 4iw
∫ 0

−∞
dτ1

∫ 0

−∞
dτ2

(τ1 + τ2) exp
[

− σ̄2
η

2
(τ1 + τ2)

2 − iµ0(τ1 + τ2)
]

[1 + ik̄2βσ̄
2
x(τ1 + τ2)][1 + 4w + ik̄2βσ̄

2
x(τ1 + τ2)]

∣

∣

∣

∣

∣

∣

−2

,

g3DS ≈
4|w|2
wR

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2

exp
[

− σ̄2
η

2
(τ1 − τ2)

2 − i(µ0τ1 − µ∗
0τ2)

]

[1 + ik̄2βσ̄
2
x(τ1 − τ2)][1 + 4wR + ik̄2βσ̄

2
x(τ1 − τ2)]

.

(21)

For example, using the current design parameters of the Linac Coherent Light

Source (LCLS) [19], we have σ̄r = 2.8, σ̄η = 0.45, and k̄β = 0.29. The funda-

mental guided mode has a complex growth rate µ0 = −1.2+0.42i and a mode

profile determined by w = 0.64− 0.50i at the optimal detuning ν̄0 = −1.0 [7].

Hence we obtain g3DA ≈ 0.3 and g3DS ≈ 2.6, both larger than the values with

vanishing energy spread and emittance.
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Fig. 1. The behavior of µI , gA and gS as functions of the rms energy spread
σ̄η = ση/ρ for a Gaussian energy distribution.
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